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A framework is developed for electromechanical behavior of dielectric crystalline solids subjected to finite
deformations. The theory is formulated in the context of electrostatics; however, vacancies in the lattice
may carry an electric charge, and their concentrations may be large. The material is treated as a continu-
ous body with a continuous distribution of point vacancies, but volumes and charges of individual defects
enter the description. The deformation gradient is decomposed multiplicatively into terms accounting for
recoverable thermoelasticity and irreversible volume changes associated with vacancies. Thermodynamic
arguments lead to constitutive relations among electromechanical quantities framed in the elastically
unloaded intermediate configuration, with the Cauchy stress tensor consistently non-symmetric as a
result of electrostatic effects. The requirement of non-negative dissipation imposes constraints on vacancy
migration. Following postulation of a quadratic form for the free energy potential, a kinetic equation for
vacancy flux is derived in the intermediate configuration, with diffusion driven by gradients of vacancy
concentration, electrostatic potential, hydrostatic pressure, and crystal structure. Effects of geometric non-
linearity (i.e. finite elastic strains and large vacancy concentrations) are found to affect vacancy diffusion in
a body subjected to biaxial lattice strain, for example a film device with lattice mismatch at its interfaces.

Published by Elsevier Ltd.

1. Introduction

The present work focuses on electromechanical behavior of di-
electric crystalline solids. A dielectric is an insulating material that
exhibits polarization in the presence of an electric field. Electrome-
chanical behaviors of interest include piezoelectric, pyroelectric, and
ferroelectric effects. Piezoelectricity, in a general sense, refers to the
coupling between electric field or polarization and stress or defor-
mation. In continuum theories, piezoelectricity of first order is at-
tributed to the particular choice of free energy functional for the
body that may depend, for example, on the product of the strain
and the polarization. Such first-order piezoelectric effects can only
occur in crystal classes that lack a center of symmetry [43]. Second-
order electromechanical effects can arise in non-conductors of all
crystal classes as a result of quadratic influences of the electric field.
This phenomenon is often called electrostriction [19,20]. Pyroelectric
crystals exhibit surface charges when uniformly heated or cooled;
such crystals feature energetic coupling between polarization and
temperature. The pyroelectric effect is revealed by heating a crystal
to induce a change in its polarization. Ferroelectric crystals comprise
a subset of pyroelectric crystals, the former exhibiting spontaneous
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polarity that can be reversed by an applied electric field. Ferroelec-
tric crystals may exhibit a transition temperature, called the Curie
point, above which they are not spontaneously polarized; the loss
of polarity may accompany a polymorphic phase transition from a
non-centrosymmetric to a centrosymmetric structure.

Many theories of geometrically and materially non-linear elec-
tromechanics of dielectric solids have appeared in historic and
more recent literature. Stratton [57] and Landau and Lifshitz [43]
presented formulations encompassing both electrostatics and elec-
trodynamics, though large deformations of the material were not
thoroughly considered. Devonshire [20] developed a continuum
thermodynamic theory of ferroelectric crystals accounting for mate-
rial non-linearity, e.g. a higher than quadratic dependence of the free
energy upon polarization, but not geometric non-linearity. Toupin
[59], Eringen [27], and Tiersten [58] formulated theories of elastic
dielectric bodies subjected to arbitrarily large deformations. Tiersten
[58] also considered thermal effects and material inertia. Mindlin
[52] developed frameworks accounting for spatial gradients of me-
chanical strain and polarization and demonstrated correlation be-
tween higher-order continuum theory and discrete lattice dynamics
in the limit of long wavelength behavior. Chowdhury et al. [10] for-
mulated a non-linear theory for thermoelastic dielectrics with effects
of polarization gradients. Geometrically non-linear theories of elec-
tromechanics were also posited by Maugin [48,49], Hadjigeorgiou
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et al. [30], Dorfmann and Ogden [22], McMeeking et al. [50], and
Vu and Steinmann [60]. In some dielectrics, reasonably large strains
are feasible via domain switching [64], necessitating the use of
geometrically non-linear theory. Large deformations are also at-
tained when pressures are significant enough to suppress fracture,
for example in shock physics experiments [49] wherein confined
piezoelectric ceramic crystals such as silicon carbide [51] are
encountered.

Lattice defects are known to strongly affect electromechanical
behavior of dielectric solids and hence performance of engineering
devices fabricated from such materials. For example, dislocations
accommodate misfit strains between dielectric thin films and sub-
strates in electronic devices [56]. In ionic crystals such as corun-
dum and sodium chloride, consideration of charge distributions and
effects of electric fields becomes necessary for describing disloca-
tion motion and dislocation reactions [34,40,41]. Polarized domains
and domain walls affect the hysteresis behavior and performance
of ferroelectric-based actuator systems [64]. Dislocations [5] and
vacancies [8] have been observed in quartz, a piezoelectric crystal
used frequently for pressure transducers and resonators. Regard-
ing the latter type of defect, vacancies are observed in a number
of dielectric materials and are a focus of the theory developed in
the present work. Mobile vacancies, in conjunction with climbing
dislocations, can dominate creep deformation, often preferentially
to glide-controlled inelasticity at high temperatures [9,61]. In ionic
crystals, vacancies typically carry an electric charge [18,37]. Such
charged vacancies notably influence dielectric properties and elec-
trical loss characteristics of capacitors, oscillators, and tunable fil-
ters [19], for example those comprised of perovskite ceramic crystals
such as barium titanate and strontium titanate [16,53]. Electroni-
cally active Si and C vacancies are important in silicon carbide [3], a
wide band-gap semiconductor.

Some clarification of terminology used for defects is now in order.
From an atomistic perspective, a vacancy is regarded as an empty
atomic site in the crystal structure, i.e. a missing atom. From the
perspective of discrete defects in elastic continua [28], a vacancy can
be treated as a sphere on the order of the atomic volume inserted into
a slightly larger hole in the solid. The boundary of the hole is then
pulled into rigid contact with that of the sphere, resulting in a radial
displacement field in the solid that decays with distance from the
defect. A void, on the other hand, consists of multiple missing atoms
and is typically treated in continuum frameworks as a spherical hole,
free of traction along its surface, with dimensions significantly larger
than that of a vacancy.

In the present work, a theory for dielectric solids undergoing po-
tentially large volume changes from mobile vacancies is developed,
with defects capable of carrying an electric charge. Large deforma-
tions resulting from generation and motion voids or vacancies are
important when considering large defect concentrations in the vicin-
ity of grain boundary depletion layers [55], and in general when
considering coalescence leading to fracture [35]. A finite deforma-
tion theory of void nucleation and growth, also incorporating devia-
toric dislocation plasticity, was developed by Bammann and Aifantis
[2] for ductile metallic crystals, but diffusion and electromechanics
were not considered. Finite volumetric deformations arising from
point defects, including vacancies and interstitials, were addressed
in differential-geometric treatments of Kroner [42] and Clayton et al.
[13], but electromechanical effects were not considered. Many and
Rakavy [46] considered charge transport resulting from diffusion of
various carriers, which may include point defects, but did not con-
sider mechanical deformation. Electrochemical potentials for diffu-
sion of charged atomic species (i.e. self-diffusion or mass transport),
interstitials, and vacancies have been the focus of a number of stud-
ies [37,40]. The electromechanical behavior of dielectric solids con-
taining mobile vacancies was more recently addressed by Xiao and

co-workers [62,63] and Clayton et al. [14,15]. Related material mod-
els have accounted for surface diffusion [14,15,32] and dislocations
[14]. Unlike the current work, none accounted for finite volumetric
deformations associated with vacancy content.

In the present work, electromechanics of dielectrics in the context
of quasi-static electric fields is considered. In the quasi-electrostatic
approximation [49,58], finite material velocities are considered, but
electrodynamic terms in Maxwell's equations are not. Material ve-
locities are restricted to remain small compared to the speed of light.
Free charge densities apart from charges associated explicitly with
vacancies, for example free electrons and electron holes, are assumed
quasi-static within the dielectric body. This is in contrast to an elec-
trical conductor with free electrons whose motion may lead to sub-
stantial current flow, requiring a formal electrodynamic description.
The vacancy flux, however, can be interpreted as an effective current
whose divergence is proportional to a rate of contribution to the to-
tal free charge density from vacancies, in which case the dielectric
with charged defects can be formally classified as a semiconductor.
Neither magnetic effects nor mass transport (i.e., self-diffusion of
bulk atoms or interstitials) is considered here.

The remainder of this paper is organized as follows. First, gov-
erning relationships for geometrically non-linear electrostatics—
Maxwell's equations, momentum and energy balances, and the
dissipation inequality in the context of finite deformations—are re-
viewed. Such a review is necessary to accompany derivations that
follow. A geometrically non-linear theory for elastic dielectrics, first
in the absence of defects, is presented. Constitutive relations for
elastic dielectric solids emerge, following consideration of the dis-
sipation inequality [10,17,24,30,50]. Then, following similar mathe-
matical and physical arguments, a geometrically non-linear theory
of dielectric crystals containing mobile vacancies is developed. The
vacancies may support an electric charge as often occurs in ionic
solids or may be electrically neutral as a special case more appli-
cable, for example, in monatomic crystals. The theory presented
here extends previous work [14,15] to large deformations and to
situations wherein Maxwell's stress is non-negligible, though sur-
face diffusion and surface growth considered previously are not
considered here. Rather, particular attention is directed towards
the diffusion equation for the bulk vacancy flux. Lastly, effects of
large elastic deformations and large vacancy concentrations on
diffusion of vacancies are examined for a slab subjected to biaxial
lattice strain, for example a film with residual stresses due to lattice
mismatch [14,53].

The following notation is used. Vector and tensor quantities are
written in bold type, while scalars and individual components are
written in italics. The index notation follows the Einstein summation
convention, distinguishing between covariant (subscript) and con-
travariant (superscript) components. Current configuration indices
are written in lower case Latin, reference configuration indices in up-
per case Latin, and intermediate configuration indices are denoted by
Greek symbols. Juxtaposition implies summation over two repeated
adjacent indices (e.g. (AB).ba = AacBcb). The dot product of vectors is
represented by the symbol Q (e.g. aQb = aagabbb, with gab compo-
nents of a metric). Angled brackets denote a dual (scalar) product
(e.g. 〈A,B〉=tr(AB)=AabBba and 〈a,b〉=�aba). The colon denotes con-
traction over repeated pairs of indices (e.g. A : B = tr(ATB) = AabBab

and (C : A)ab = CabcdAcd). The symbol ⊗ represents the tensor prod-
uct (e.g., (a⊗b)ab = aabb). The symbol ◦ represents the composition,
such that for two functions f and g, (f ◦ g)(X) = f (g(X)). Superposed
−1, T, and Q denote inverse, transpose, and material time deriva-
tive operations, respectively. Subscripted commas denote partial co-
ordinate differentiation. Indices in parentheses are symmetric, that
is 2A(ab) = Aab + Aba, while indices in brackets are anti-symmetric,
i.e., 2A[ab] = Aab − Aba. An extensive list of symbols is provided in
Appendix A.
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2. Geometrically non-linear electromechanics

Field variables associatedwith finite deformations and electrome-
chanical effects are introduced in Section 2.1, followed by governing
equations of electrostatics in Section 2.2. In Sections 2.3, 2.4 and 2.5,
equations of momentum and energy conservation and the dissipa-
tion inequality for dielectric solids subjected to finite deformations
and electromechanical loadings are presented.

2.1. Kinematics and electromechanical quantities

Let x=�(X, t) denote the smooth and invertible motion of a body,
with x denoting spatial coordinates and X denoting reference coordi-
nates. The deformed body B is parameterized by spatial coordinates,
while the body B0 in the reference configuration is parameterized
by reference coordinates. The local deformation gradient is the map
from the reference to current tangent space, TXB0 → TxB [47]

F = T�X = �xa

�XA
ga ⊗ GA, Fa.A = �xa

�XA
, (1)

where ga and GA are bases referred to current and reference coordi-
nates, respectively. A differential line element dX ∈ TXB0 is deformed
to dx = FdX ∈ TxB. Mass conservation provides the requirements∫
V
�0 dV =

∫
v
�dv → �0 = �J, (2)

where reference and current mass densities are �0 and �, reference
and current volume elements are dV and dv, and the Jacobian J =
dv/dV = det(Fa.A)

√
g/G>0, with g = det(gab) and G= det(GAB). Spatial

and referential metric tensors satisfy gab = gaQgb and GAB = GAQGB.
Christoffel symbols are

2
g
� ..a

bc = gad(gcd,b + gbd,c − gbc,d),

2
G
� ..A

BC = GAD(GCD,B + GBD,C − GBC,D). (3)

Components of the covariant derivative of a spatial vector field a ∈ TB

are then
g
∇baa=aa.,b+

g
� ..a

bca
c. Analogous formulae apply for the covari-

ant derivative
G
∇B taken with respect to reference coordinates, and

covariant derivatives of higher-rank tensors follow conventional def-
initions [13]. Specifically let v(x, t) denote the spatial velocity field.
The spatial velocity gradient is

La.b = g
∇bv

a = va.,b +
g
� ..a

bcv
c = Ḟa.AF

−1A
.b . (4)

Furthermore, let EAB=( 12 )(CAB−GAB) denote components of the sym-
metric Lagrangian strain tensor, where CAB = Fa.AgabF

b
.B. It follows that

J̇ = JDa
.a and ĖAB = Fa.ADabF

b
.B, where Dab = L(ab).

The spatial electric field ê ∈ TB describes the Lorentz force f̂
associatedwith a point charge ofmagnitude q: f̂=qê. The electric field
may permeate the dielectric body, surrounding media, and vacuum.
The electric field vanishes inside conductors in the absence of current
flow.

The free charge density per unit spatial volume is defined by

�̂ =
∑
i

n̂(i)q(i) =
∑
i

n̂(i)ez(i), (5)

with n̂(i) the number of charge carriers per unit volume of charge
q(i)=ez(i), where e is the charge of an electron (1.602(10)−19 C) and z(i)

is the integer valence of each member of charge carrier population
i. For excess electrons, z = −1, while for holes or missing electrons,
z=+1. The charge density �̂ vanishes in pure vacuum (i.e., a vacuum
containing no free electrons) and within neutral conductors.

B, xB0 , X

tS

N
s

F=TϕxV v

n

pP

σ

ρ

φ

 e
E3

Fig. 1. Continuum quantities for deforming dielectric body in presence of electric
field.

Polarization density, or simply the polarization, is the vector p̂ ∈
TxB (dimensions of charge per unit area) that is often collinear with
the relative shift of electron clouds and/or ions comprising a di-
electric, or with the orientation of a permanent electric dipole [49].
Polarization vanishes in vacuum and in conductors. Electric displace-
ment d̂ ∈ TB is related to electric field and polarization by [57]

d̂ = �0ê + p̂, (6)

where the dimensional constant �0(8.854(10)
−12 C2 N−1 m−2) is the

permittivity of free space. Since polarization vanishes in vacuum, (6)
reduces to d̂= �0ê in free space. The surface free charge density �̂ is
defined on surface s of a body with unit normal n as

�̂ = 〈�d̂�,n〉. (7)

In (7), �d̂� = d̂+ − d̂− is the jump in d̂ at the interface of s and the
medium external to the body, which could be vacuum or another
body. Here, + and − denote respective limiting values of a quantity
at locations outside and inside the body as s is approached from
the corresponding side, and n is directed from the − side to the +
side (directed from inside to outside). A deforming dielectric body
in three-dimensional Euclidean space E3 with corresponding elec-
tromechanical quantities is shown in Fig. 1.

2.2. Maxwell's equations of electrostatics

Maxwell's equations of electrostatics consist of the following in-
tegral relations in the spatial frame:∫
c
êQdx = 0,

∫
s
〈d̂−,n〉ds =

∫
v
�̂dv. (8)

The first of Maxwell's equations states that the line integral of the
electric field along an arbitrary closed curve c vanishes. From Stokes's
theorem, the first of (8) can be written∫
c
êa dx

a =
∫
s
�abc

g
∇aêbnc ds = 0. (9)

A vector field in a simply connected domain whose skew covariant
derivative (i.e. curl) vanishes can be represented as the gradient of a
scalar potential. Here, the scalar potential �̂ is called the electrostatic
potential and is continuous throughout space [27]. The local form of
(9) is1

�abc
g
∇aêb = 0 ⇔ ê[b,a] = −�̂[,ba] = 0 ⇔ êb = −�̂,b. (10)

1 Though curvilinear coordinates are used throughout the paper for generality,
Cartesian indices are implied for all integral equations involving vector and tensor
fields. Alternatively, following [59], all quantities entering a vector-valued integrand
can be parallel transported to a single point using the shifter, and the resultant
integral evaluated at that point.
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In the domain of (9), C1-continuity of ê is assumed; finite jumps in
the normal component of ê are admitted across surfaces of discon-
tinuity, but �abc�êb�nc = 0 across such surfaces [27]. The second of
Maxwell's equations establishes a conservation law between surface
and volumetric charges. Applying the divergence theorem to the left
side of the second of (8) and localizing the result

g
∇ad̂a = �̂. (11)

In arriving at (11), C1-continuity of d̂ is assumed within the domain
of integration; the normal component of a jump in d̂ across a surface
is given by (7). Multiplying (11) by �̂, integrating over volume v
enclosed by surface s, and applying the divergence theorem with (7)
and (10) yields∫
v
d̂Qêdv =

∫
v
�̂�̂dv +

∫
s
	̂�̂ds, (12)

where 	̂ = −〈d̂−,n〉 measures the contribution from the inside of s
to the free charge density in (7).

Spatial relations (8)–(12) can bemapped to their referential coun-
terparts as follows [22,60]. In particular, the first of (8) becomes∫
c
êQdx =

∫
C
êQFdX =

∫
C
FT êQdX =

∫
C
ÊQdX = 0, (13)

where C is a closed reference curve and Ê=FT ê ∈ TB0, with ÊA=Fa.Aêa.
Relations analogous to (10) then emerge

�ABC
G
∇AÊB = 0 ⇔ Ê[B,A] = −
̂[,BA] = 0 ⇔ ÊB = −
̂,B, (14)

where the potential 
̂(X, t) = �̂ ◦ �. From Nanson's formula∫
S
〈D̂−,N〉dS =

∫
V
�̂0 dV , (15)

with D̂ = JF−1d̂ ∈ TB0, �̂0 = �̂J, and S the surface enclosing reference
volume V . The analog of (11) is then obtained directly from (15) and
the divergence theorem

G
∇AD̂A = �̂0. (16)

Finally, multiplying both sides of (16) by 
̂, integrating over V , and
using (14) gives∫
V
D̂QÊdV =

∫
V
�̂0
̂dV −

∫
S

̂〈D̂−,N〉dS. (17)

No natural definition exists for the reference analog of spatial polar-
ization p̂. One obvious assumption is

P̂ = FT p̂, (18)

leaving the following referential version of (6):

D̂ = JC−1(�0Ê + P̂), (19)

where the symmetric deformation tensor C is defined immediately
following (4).

Some authors partition the electric field or electrostatic potential
into contributions from various internal and external sources [27,59];
in the present work, a single electric field and potential are used in
the governing equations, following [58].

2.3. Momentum conservation

Electromechanical interactions induce modifications to the bal-
ance laws of linear and angular momentum of classical continuum
mechanics. Such interactions can be addressed straightforwardly via

the introduction of an electromechanical body force. In electrostat-
ics, this force, per unit current volume, is

b̂ = p̂
g
∇ ê + �̂ê, b̂a = p̂b

g
∇bê

a + �̂êa, (20)

where the first term on the right side is attributed to short range in-
teraction of the polarization with the electric field [58,59], and the
second term arises from Lorentz forces attributed to non-vanishing
free charges. From (6), (10) and (11), and assuming sufficient smooth-
ness of the electric field and polarization, the force b̂ can be ex-
pressed as the divergence of a rank two contravariant tensor known
as the Maxwell stress ŝ

ŝ= ê ⊗ d̂ − �0
2
(ê · ê)g−1

= ê ⊗ p̂ + �0ê ⊗ ê − �0
2
(ê · ê)g−1,

g
∇b�̂

ab = b̂a. (21)

With the inclusion of electrostatic body force b̂, the global balance
of linear momentum is∫
v
�v̇a dv =

∫
s
ta ds +

∫
v
(b̄a + b̂a)dv =

∫
v
(
g
∇b�

ab + b̄a + b̂a)dv, (22)

with ta=�abnb themechanical traction, r the Cauchy stress, and b̄ the
mechanical body force per unit current volume. In (22), the Cauchy
stress is assumed differentiable within v. The local form of (22) is

g
∇b�

ab + b̄a = �v̇a, (23)

where s= r+ ŝ is the total stress tensor, i.e., the sum of the Cauchy
andMaxwell stresses. Because the electric field and polarization may
exhibit jump discontinuities across s, the boundary conditions are

Ta = t−a − ��̂ab�nb, (24)

where Ta are components of the net applied traction [59], which can
be assigned as Ta = t+a [58].

The body force b̂ likewise enters the balance of moment of mo-
mentum, along with an additional moment attributed to interaction
between the polarization and electric field [58,59]

d
dt

∫
v
�abcx

b�vc dv =
∫
v
�abcx

bb̄c dv +
∫
s
�abcx

btc ds

+
∫
v
�abcx

bb̂c dv +
∫
v
�abcê

cp̂b dv. (25)

Application of the divergence theorem and Reynolds transport the-
orem along with (21) leads to∫
v
�abcx

b(�v̇c − b̄c − g
∇d�

cd)dv =
∫
v
�abc(�

cb + �vcvb + �̂cb)dv. (26)

The left side of (26) vanishes by linear momentum balance (23),
and the second term in the integrand on the right vanishes by the
symmetry of v⊗ v. The local balance of angular momentum is, from
the remaining terms in (26),

�ab = �(ab), �[ab] = �̂[ba] = ê[bp̂a], (27)

meaning that the total stress s is symmetric, but the Cauchy stress r
need not be. In non-polarized media, ê[ap̂b]=0 such that the classical
balance of angular momentum �[ab] = 0 applies. However, if such
materials support an electric field and a non-vanishing free charge
density, the balance of linear momentum (23) will be affected by
(20). In pure vacuum, the Cauchy stress vanishes, and the balance

of linear momentum reduces to
g
∇b�̂

ab = b̂a = 0, satisfied identically
since the polarization and free charge density vanish by definition
in pure vacuum.
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Various definitions have been postulated for the mechanical
stress and Maxwell stress, as discussed by Eringen [27]. The defini-
tion used in the present work for the Cauchy stress corresponds to
the local stress of Toupin [59] and is the transpose of the mechanical
stress of Tiersten [58]. The definition used in the present work for
the Maxwell stress (21) is consistent with that of Toupin [59] and
is the transpose of the Maxwell stress of Tiersten [58]. Notice that
in the present work, the index of the traction vector corresponds to
the first index of the corresponding stress tensor (e.g. ta = �abnb),
following the notation scheme of Toupin [59], but opposite to
notations of Eringen [27], Tiersten [58], and McMeeking et al. [50].

2.4. Energy conservation

Various methods have been set forth to account for energy con-
servation in dielectrics [10,14,15,20,27,48–50,58–60]. Variational
principles can provide insight into field equations and boundary
conditions for static and non-dissipative processes [27,59], while
rate forms of the energy balance are useful for situations involving
dynamics and dissipation [14,15,50,58]. Prescribed here is a global
balance between rates of internal energy, kinetic energy, external
work, and thermochemical heating

d
dt

(E+K) =P+Q, (28)

with the contributions from kinetic energyK and extrinsic thermo-
chemical energy Q given by

K=
∫
v
(�/2)vQv dv, Q=

∫
v
�r dv −

∫
s
〈q−,n〉ds, (29)

where a dielectric body occupying spatial volume v with oriented
surface element nds is considered. Field variables are assumed to
possess sufficient smoothness within v to enable use of local forms
of Maxwell's equations and momentum balances as well as the di-
vergence theorem. However, electric field and polarization may ex-
hibit finite jumps across s. In the present thermodynamic analysis,
the body is treated as an open region, meaning that surface terms
are evaluated as s is approached from the inside of the body. In the
second of (29), scalar r denotes sources of thermal or chemical en-
ergy per unit mass, and q ∈ TxB is the heat flux vector that is con-
tinuous across all interfaces such that 〈�q�,n〉 = 0 along s [58]. The
total internal energy is defined by

E=
∫
v
�e dv + �0

2

∫
v
êQêdv. (30)

The first term on the right accounts for the stored internal energy of
the body, denoted locally per unit mass by e. The second term on the
right side of (30) represents the potential energy of the electric field
that permeates the body and underlying vacuum (i.e. the aether).
The combined electromechanical rate of working is

P=
∫
s
tQv ds +

∫
v
(b̄ + b̂)Qv dv + d

dt

∫
s
	̂�̂ds

+ d
dt

∫
v
�̂�̂dv +

∫
v
�dv. (31)

The first term on the right of (31) accounts for the mechanical trac-
tion, the second term accounts for body forces, the third term ac-
counts for the work done by surface charges, and the fourth for
the work of volumetric charges. The final term is chosen such that
throughout E3 (moving dielectric and vacuum) the balance of energy
is satisfied identically:

� = [
˙̂
�,a − �̂,b

g
∇avb + �̂,a

g
∇bv

b]d̂a + �0
2

�̂,a�̂
,a g
∇bv

b, (32)

where application of the chain rule produces the identity
˙̂
�,a =

�̂,b
g
∇avb − ˙̂ea. Various forms have been suggested for � [27,49,58],

and some authors subtract part or all of the contribution of � from
the rate of total internal energy rather than incorporate it in the rate
of external power. Identical quantities can be represented in a vast
number of ways via manipulation of Maxwell's equations and use
of vector identities and theorems of Gauss and Stokes. Recall also
that in the present Section, along the lines of previous theories for
dielectric media in the quasi-electrostatic approximation [10,50,58],
purely mechanical dynamic effects are considered (i.e. finite veloc-
ity v), but electrodynamics are not (i.e., fluxes of free electrons/holes
are absent).

Substituting (29)–(32) into (28) and converting all surface inte-
grals to volume integrals using (12) and the divergence theorem, the
global balance of energy becomes[∫

v
�ė dv+

∫
v
�v̇ava dv−

∫
v
êa ˙̂pa dv

]
+
∫
v
êa

˙̂
d
a
dv+ �0

2

∫
v
êaêa

g
∇b v

b dv

=
[∫

v
�r dv−

∫
v

g
∇bq

b dv+
∫
s
(
g
∇b�

abva+�ab g
∇bva)dv

+
∫
v
(b̄a+b̂a)va dv

]
+
∫
v
êa

˙̂
d
a
dv+ �0

2

∫
v
�̂,a�̂

,a g
∇bv

b dv

+
∫
v
( ˙̂ea+ ˙̂

�,a−�̂,b
g
∇avb+�̂,a

g
∇bv

b+êa
g
∇bv

b) d̂a dv. (33)

The integrand of the last term on the right side of (33) vanishes
identically. Terms in braces vanish identically in vacuum, and terms
not in braces cancel. Collecting terms in braces and localizing gives

�ė = (
g
∇b�

ab + b̄a − �v̇a)va + �ab g
∇bva − g

∇bq
b + �r + êa ˙̂pa. (34)

Then after using (4) and (23), the local balance of energy remains

�ė = 〈r, LT 〉 − 〈 g
∇,q〉 + �r + 〈ê, ˙̂p〉. (35)

Notice that (35) differs from the energy balance for non-polar
continua in two ways. Firstly, the Cauchy stress is not necessarily
symmetric in (35), so that the spin (skew part) of L may contribute

to the stress power 〈r, LT 〉 = �abLab = �ab
g
∇bva. Since ta = �abnb, the

index of stress associated with the traction vector is conjugate to
that associated with the velocity va, in agreement with other non-
linear theories for dielectric media [58] and also in agreement with
models of generalized continua with couple stresses [45]. Secondly,
the final term on the right side of (35) is absent in non-polar solids.

Two approximations are often made to simplify the governing
equations of deformable dielectrics. The first is the assumption of ge-
ometric linearity, i.e. small deformations. In that case introduction of
(13)–(19) is unnecessary, since the distinction between undeformed
and deformed configurations is not made explicitly. Balances (23)
and (27) are unchanged, but (35) becomes �ė = �ab∇bu̇a − ∇bqb +
�r + êa ˙̂pa, where u is the displacement. The second is the assump-
tion that terms on the order of the product of the electric field and
polarization, or on the order of the square of the electric field, may
be neglected in the governing equations [54]. In that case body force
(20) and Maxwell stress (21) vanish, and momentum balances re-
duce to those of classical continua. With these reductions, the term
in parentheses in (34) still vanishes, and the final form of the energy
balance (35), remains unchanged. However, the stress tensor is now
symmetric, and hence the skew part of the velocity gradient does
not contribute to the rate of change of internal energy.

Different contributions to the energy balance from elec-
tromechanical non-linearity are suggested in different theories
[27,50,58,59]; the local balance (35) matches that of Tiersten [58]
except for Tiersten's use of polarization per unit mass rather than
the polarization per unit volume. Polarization gradients may be im-
portant for describing some physical phenomena [10,49,52]; in such
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cases, augmentation of the energy balance to account for effects of
polarization gradients may be necessary.

2.5. Entropy production

The global form of the Clausius–Duhem inequality is written
[45,50,58]

d
dt

∫
v
�dv�

∫
v

�r
�

dv −
∫
s

〈q−,n〉
�

ds, (36)

where  is the entropy per unit mass and �(X, t) is the tempera-
ture. Application of the divergence theorem and differentiation of
the Helmholtz free energy � = e − � provides a local form of (36)

�(ė − �̇ − �̇ − r) + 〈 g
∇,q〉 − 1

�
〈 g
∇ �,q〉�0. (37)

The entropy production inequality following from insertion of (35)
into (37) is

〈r,D〉 − 〈r,W〉 + 〈ê, ˙̂p〉 − �(�̇ + �̇) − 1
�

〈 g
∇ �,q〉�0, (38)

where the covariant velocity gradient L is decomposed into a sym-
metric part D and skew part W.

3. Elastic dielectric solids

Elastic dielectrics considered in the present section contain no
defects. Such materials obey the Cauchy–Born hypothesis [6,26], that
is, both the material and the primitive Bravais lattice vectors of the
crystal structure deform via the deformation gradient F of (1). Under
a homogeneous deformation in the sense of Born and Huang [6],
a polarized dielectric may also exhibit a relative translation among
different atomic species (e.g., positive and negative ions) comprising
the basis of the crystal structure. The current Section provides a point
of reference for comparison with the theory for defective crystals
developed later in Section 4.

3.1. Constitutive assumptions

Constitutive functions are first assumed to exhibit the following
dependencies, prior to consideration of objectivity requirements:

� = �(F, p̂,�),  = (F, p̂,�), r= r(F, p̂,�), ê = ê(F, p̂,�),

q = q(F, p̂,�,
g
∇ �). (39)

Use of polarization as an independent state variable and electric field
as a dependent variable follows general schemes of Devonshire [20]
and Toupin [59]. The choice of electric field as independent variable
and polarization as dependent variable is also possible [22,50,60].
Via (6), the electric displacement d̂ could substitute for either of the
electric field or polarization in the thermodynamic potentials.

Consider rigid body motions of the form x → Q̂x + c, where
Q̂ = Q̂−T is a constant rotation tensor and c is a constant translation
vector. Under such motions, spatial polarization and electric field
vectors transform as p̂ → Q̂ p̂ and ê → Q̂ ê, and the remaining non-
scalar variables in (39) transform according to F → Q̂F, r→ Q̂rQ̂T ,
q → Q̂q, and �,a → Q̂a

,b�
,b. On the other hand, the referential po-

larization and electric field vectors are invariant under rigid body
motions

P̂ = FT p̂ → FT Q̂T Q̂ p̂ = P̂, Ê = FT ê → FT Q̂T Q̂ ê = Ê, (40)

and thus are valid candidates for use in frame-indifferent constitutive
relations. The following objective forms of (39) are suggested:

� = �(E, P̂,�),  = (E, P̂,�) R=R(E, P̂,�), Ê = Ê(E, P̂,�),

Q = Q (E, P̂,�,
G
∇ �), (41)

with reference heat flux Q = JF−1q, second Piola–Kirchhoff
stress—possibly non-symmetric with components �AB = JF−1A

.a �ab

F−1B
.b —and reference temperature gradient

G
∇A� = Fa.A

g
∇a� all remain-

ing unchanged under rigid rotations [17].

3.2. Thermodynamics

The stress power entering (35) and (38) can be written as

�abLab = J−1(JF−1A
.b �cbgac)Ḟa.A = J−1P.Aa Ḟa.A, (42)

where P is the first Piola–Kirchhoff stress. Expanding the rate of free
energy using (39) gives

�̇ =
〈
��
�E

, Ė

〉
+
〈
��

�P̂
, ˙̂P
〉

+ ��
��

�̇, (43)

where

��
�EAB

ĖAB = Fa.A
��
�EAB

gabḞ
b
.B,

��

�P̂A
˙̂PA = ��

�P̂A
p̂aḞa.A + ��

�P̂A
Fa.A

˙̂pa. (44)

Substitution of (42)–(44) into dissipation inequality (38) then leads
to〈
J−1P − �gF

��
�E

− �P̂F−1 ⊗ ��

�P̂
, Ḟ

〉
+
〈
ê − �F

��

�P̂
, ˙̂p
〉

− �

(
��
��

+ 

)
�̇

− J−1�−1
〈
G
∇ �,Q

〉
�0. (45)

Consider first isothermal conditions for which temperature rates
and temperature gradients vanish. Under such conditions, presum-
ing that the dissipation must remain non-negative when either the
rate of spatial polarization or the rate of deformation gradient as-
sumes an arbitrary value, the following constitutive relationships
follow from (45):

Ê = C�
��

�P̂
, ÊA = CAB�

��

�P̂B
, (46)

P=�0

(
F
��
�E

+P̂F−1 ⊗ ��

�P̂

)
, PaA=�0

(
Fa.B

��
�EBA

+gabP̂BF
−1B
.b

��

�P̂A

)
. (47)

Substituting (46) into (47), second Piola–Kirchhoff and Cauchy
stresses become, respectively,

�AB = F−1A
.a PaB = �0

��
�EAB

+ JC−1ACP̂CC−1BDÊD,

�ab = J−1Fa.A�
ABFb.B = 2�

��
�gab

+ p̂aêb, (48)

where C−1AB = F−1A
.b gabF−1B

.b . The second terms on each of the right
sides of (48) account for possibly non-symmetric parts of the stress
tensors. These terms arise from second-order electromechanical in-
teractions. Consistency of skew-symmetric parts of (27) and (48) is
revealed by �[ab] = ê[bp̂a] = �̂[ba], and the symmetric total stress is

s= 2�
��
�g

+ p̂ ⊗ ê + ê ⊗ p̂ + �0ê ⊗ ê − �0
2
(ê · ê)g−1. (49)

The first term on the right of (49) is recognizable as the
Doyle–Ericksen formula for hyperelastic solids [23,47]. The final two
terms in (49) contribute to electrostriction, even in non-polar solids.
Presuming that (45)–(47) must hold in the absence of temperature
gradients

 = −��
��

. (50)



J.D. Clayton / International Journal of Non-Linear Mechanics 44 (2009) 675 -- 688 681

The entropy inequality thus reduces to the heat conduction inequal-
ity. When a referential version of Fourier's Law applies, then

Q = −K
G
∇ �, QA = −KAB�,B, (51)

where the conductivity K is symmetric and positive semi-definite
such that −QA�,A = KAB�,A�,B�0.

The energy balance (35) is now revisited. The specific heat ca-
pacity c is introduced, from (50) satisfying

c = �e
��

= �e
�

�
��

= −�
�2

�

��2 . (52)

Using (42)–(51) andmultiplying spatial energy balance (35) by J gives

−�
d
dt

(
�0

��
��

)
= �0�̇ = 〈 G∇,K

G
∇ �〉 + �0r. (53)

Carrying out the time derivative using (43) and substituting with
(52) results in

−�
d
dt

(
�0

��
��

)
= −�0�

(
��̇
��

)
= �0c�̇ + �〈b, Ė〉 + �〈v, ˙̂P〉, (54)

where the cross-derivatives account for thermoelastic and thermo-
electric coupling, respectively,

b= −�0
�2

�
���E

, v= −�0
�2

�

���P̂
. (55)

Equating (53) and (54), a rate equation for the temperature emerges

�0c�̇ = 〈 G∇,K
G
∇ �〉 − �[〈b, Ė〉 + 〈v, ˙̂P〉] + �0r, (56)

with the first term on the right capturing heat conduction, the second
and third terms capturing thermomechanical and thermoelectrical
couplings, respectively, and the final term capturing non-mechanical
sources of heat energy.

3.3. Representative free energy

Free energy function � in the first of (41) is examined in more
detail for illustrative purposes. Consider the following form of the
free energy per unit reference volume:

�0� = 1
2E : C : E + 1

2 〈P̂,KP̂〉 + 〈P̂,� : E〉 − (� − �0)b : E

− (� − �1)〈v, P̂〉 + Y , (57)

where the constant coefficients are

C = �0
�2

�
�E�E

∣∣∣∣∣ E=0
P̂=0
�=�0

, K= �0
�2

�

�P̂�P̂

∣∣∣∣∣ E=0
P̂=0
�=�0

, � = �0
�2

�

�P̂�E

∣∣∣∣∣ E=0
P̂=0
�=�0

,

b= −�0
�2

�
���E

∣∣∣∣∣ E=0
P̂=0
�=�0

, v= −�0
�2

�

���P̂

∣∣∣∣∣ E=0
P̂=0
�=�1

. (58)

Here, CABCD are elastic moduli, �AB are inverse dielectric susceptibil-
ities, �ABC are piezoelectric coefficients, and Y = Y(�) is the thermal
energy. The following symmetries emerge from (58):

CABCD = CCDAB = CBACD = CABDC , �AB = �BA, �AB = �BA,

�ABC = �ACB, (59)

meaning that the elastic moduli contain up to 21 independent co-
efficients, the dielectric susceptibilities and thermal stress parame-
ters up to six independent coefficients, and the piezoelectric moduli
up to 18 independent coefficients. The coefficients in (58) require

modification to accommodate more general non-linear behavior. For
example, a coupled dependency of dielectric susceptibility on tem-
perature and even powers of polarization is useful for describing
energy wells and phase transitions in ferroelectric crystals [20] and
variations in the dielectric constant with applied voltage [39]. Al-
lowance of dielectric and piezoelectric coefficients to vary with po-
larization enables description of hysteresis under cyclic electric fields
[64]. A term quadratic in polarization and linear in strain can be
added to (57) to account for additional electrostriction [49].

The piezoelectric effect, �ABC
�0, is present in 20 of the 21 non-

centrosymmetric crystal classes [19,43]. Of these, 10 crystal classes
possess a unique polar axis and may exhibit polarization in the ab-
sence of applied electric fields and applied strains. In the context
of (55), such materials possess a non-zero pyroelectric coefficient v,
leading to polarization with temperature variation.

4. Dielectrics with mobile vacancies

In what follows, the theory of non-linear elastic dielectrics of Sec-
tion 3 is extended to account for vacancy defects, possibly mobile
and possibly charged. Such a theory may be used to describe dielec-
tric thin film devices containing mobile oxygen vacancies, for exam-
ple [14–16,53] or silicon carbide with mobile C or Si vacancies [3],
though it applies to more general scenarios as well (e.g. ceramics
with point defects).

4.1. Governing equations

Maxwell's equations of electrostatics and balances of linear and
angular momentum apply here, specifically local forms (10), (11),
(23) and (27). However, the free charge density (5) is extended to
delineate non-vanishing charges carried by vacancies in ionic solids
from other charges, and the balance of energy and dissipation in-
equality are modified to account for electrochemical energy supplied
by fluxes and rates of mobile vacancies. The global rate of energy
exchange from thermochemical sources in (29) is generalized to in-
clude energy supplied by the vacancy flux

Q=
∫
v
�r dv −

∫
s
〈q−,n〉ds −

∫
s
m−〈f−,n〉ds, (60)

where f ∈ TxB is the flux of vacancies, with dimensions of velocity
per unit spatial volume, and m is the scalar chemical potential,2

with dimensions of energy. Equivalently, f may be viewed as the
number of vacancies traversing an oriented area element nds per
unit time and m the (electro)chemical energy carried per (charged)
vacancy. The chemical potential can be associated with the energy
required to move an atom from an interior lattice site to a lattice
site on the surface, leaving behind a vacancy in the interior [34]. The
vacancy flux is continuous across interfaces such that 〈�f�,n〉 = 0
along s. The sign convention follows that used for the heat flux q,
meaning that when m is positive, vacancies and energy flow out of
the body when m−〈f−,n〉>0 on s. When the contacting medium
along s is impermeable to vacancies, 〈f−,n〉=〈f+,n〉=0. On the other
hand, when the contacting medium along s is vacuum as opposed
to another solid body, vacancies are annihilated as they flow from
the dielectric body into the vacuum or are created as they flow
from the vacuum into the dielectric body. It is important to note
that m is not a constant, and instead may generally depend upon
field variables such as stress, temperature, and charge density. For
simplicity, only a single species of vacant atoms or ions is considered,
meaning that each vacancy carries the same charge and occupies the

2 More generally, a tensor chemical potential with components ma
.b could be

used [7,31] so that the energy flux becomes ma
.b�

bna . Here (60) is limited to isotropy,
implying that ma

.b = m�a
.b .
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same volume. Mass transport associated with movement of atoms
between interstitial sites is not considered.

Let � denote the number of vacancies per unit spatial volume.
The vacancy content of the body increases (decreases) only when
vacancies enter (exit) at interfaces with other bodies or free surfaces.
Internal generation and annihilation of vacancies are not considered.
Hence, the global time rate of vacancies per unit volume in the body
in the current configuration is dictated by the conservation law

d
dt

∫
v
�dv = −

∫
s
〈f−,n〉ds. (61)

Relation (61) is mapped to the reference configuration as

∫
V
�̇0 dV = −

∫
S
〈f−0 ,N〉dS, (62)

where �0 = J� and f0 = JF−1f. Applying Gauss's theorem to (62) and
localizing the result gives

�̇0 = −〈 G∇, f0〉, (63)

which enforces conservation of vacancies in the bulk solid [14,15,32].
It is assumed that electric charges may be carried by vacancies

such that their contribution to the charge density in (5) is [14,15,36]

�̂V = ez�, (64)

where z is an integer valence number. For vacant anion sites, z>0,
while for vacant cation sites, z<0. The charge density (5) is modified
as

�̂ = �̂C + �̂V =
∑
i

n̂(i)ez(i) + ez�, (65)

where �̂C is the density of electronic charges introduced in (5) and
�̂V accounts for the contribution of charged defects whose density
may evolve with time via (61). Global charge conservation suggests
that electronic charges contributing to �̂C in (65) could vary with
time in order to compensate for a non-zero rate of �̂V . However, be-
cause electronic charges travel much faster than diffusing vacancies,
and because time scales of present interest correspond to those asso-
ciated with vacancy diffusion, it is assumed that contributions from
moving electronic charges (i.e., electric current) can be neglected in
the governing equations, consistent with the quasi-electrostatic ap-
proximation. In other words, free charges are assumed to rapidly
self-equilibrate [62]. With these assumptions, (63) is analogous to
the proportionality relationship between the rate of free electronic
charges and the negative divergence of an unsteady electric current
in electrodynamics [49]. Note that �̂V contributes to (11) and (20).
Because the time rate of �̂V may be non-zero, the local rate of elec-
tromechanical energy in (32) becomes

� = [
˙̂
�,a − �̂,b

g
∇avb + �̂,a

g
∇bv

b]d̂a + �0
2

�̂,a�̂
,a g
∇bv

b

− �̂[ ˙̂�V + �̂V g
∇bv

b], (66)

where the final term on the right side accounts for the increase
in total internal energy resulting from an evolving charge density
associated with mobile vacancies.

From the divergence theorem, the chemical work associated with
the final term on the right of (60) is

−
∫
s
m−〈f−,n〉ds = −

∫
v
m〈 g

∇, f〉dv −
∫
v
〈 g
∇ m, f〉dv. (67)
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F

Fig. 2. Kinematic description of deforming crystal volume element of fixed mass;
dark circles represent atoms and open circles represent vacancies.

Applying Piola's identity and (63) to the first integrand on the
right of (67) results in

−m〈 g
∇ , f〉 = − J−1m〈 G∇ , f0〉 − m〈 g

∇ Q(J−1F), f0〉 = J−1m�̇0

= m(�̇ + �trL). (68)

Upon replacing the second of (29) with (60) and using (66) in
place of (32), global energy balance (28) is consulted. Then, after ap-
pealing to (64), (67) and (68), the local balance of energy is expressed
as

�ė = 〈r, LT 〉 − 〈 g
∇,q〉 + �r + 〈ê, ˙̂p〉 + m(�̇ + � trL) − 〈 g

∇ m, f〉
− ez�̂(�̇ + �trL), (69)

differing from (35) via the addition of the final three terms. These
terms are associated with the chemical potential energy supplied by
vacancy rates and fluxes and the electromechanical energy attributed
to the time rate of change of charged vacancies. Substituting (69) into
(37) provides the dissipation inequality for dielectrics with charged
vacancies, referred to configuration B

〈r, LT 〉 + 〈ê, ˙̂p〉 + m(�̇ + � trL) − 〈 g
∇ m, f〉 − ez�̂(�̇ + � trL) − �(�̇ + �̇)

− 1
�

〈 g
∇ �,q〉�0. (70)

4.2. Kinematics

The deformation gradient of (1) is decomposed multiplicatively
[4,44] to account for recoverable thermoelastic deformation FE and
volumetric deformation FV attributed to vacancies

F = FEFV , Fa.A = FEa.� FV�
.A , (71)

implying the existence of an unstressed intermediate configuration
[25] labeled in Fig. 2 as B̄, and a corresponding series of global tan-
gent mappings FV : TB0 → TB̄ and FE : TB̄ → TB [4,13]. The elastic
deformation FE consists of stretch of the lattice due to mechanical
loading, elastic and rigid body rotations, and deformation result-
ing from thermal expansion or contraction induced by temperature
changes. The latter is considered reversible: in the absence of other
deformation modes, restoration of the local crystal element to its
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reference temperature relieves the thermal strain. Deformation from
vacancies FV is mechanically irreversible, since it generally remains
when external forces are removed from the crystal, and is assumed
to manifest only through a change in volume of the solid. Possible
shape changes of the solid associated with non-spherical pores or
anisotropic clusters of vacancies within a given volume element of
crystal are not considered. Because the deformation resulting from
vacancies is isotropic, it can be expressed as

FV = (1 − �̄)−1/3d̄, FV�
.A = (1 − �̄)−1/3�̄

�
.A. (72)

The scalar

�̄ = (dV̄ − dV)/dV̄ = 1 − JV−1 (73)

is the volume fraction of vacancies per unit volume in configuration
B̄ [2,13,42], where JV is the Jacobian determinant of FV . Neither FE

nor FV need be integrable to a displacement function; specifically,
incompatibility of the latter is reflected by the quantity �̄

�
.[A�̄,B], non-

zero when the field �̄(X, t) is heterogeneous. An external Cartesian
coordinate frame with basis vectors not tangent to any material lines
is implied for anholonomic configuration B̄ [12], with corresponding
Cartesian metric ḡ�� = ���. Also, d̄ is the shifter between B̄ and B0,
equivalent in (73) to the identity map 1 with coincident coordinate
axes implied in B̄ and B0.

As illustrated in Fig. 2, the reference configuration is a perfect
crystal, free from defects, though the theory does not preclude a dis-
tribution of vacancies at t=0. Notice that by (72), vacancies increase
the specific volume and decrease the mass density of an element of
fixed mass when �̄>0. As shown in Fig. 2, the total number of atoms
in the element under consideration remains fixed in all configura-
tions, i.e. mass is conserved in agreement with (2). Introduction of a
vacancy by removal of an atom from a perfect lattice site can cause
contraction of the remaining atoms towards the defect such that the
energy associated with interatomic separation distances is reduced,
shown qualitatively by the local attraction of a few of the atoms to
their neighboring vacant sites in Fig. 2. For example, according to
continuum elasticity theory, the radial displacement field induced by
a spherical point defect in an infinite isotropic body decays inversely
to the square of the radial distance from the defect [28]. When the
reduction in volume induced by such local displacement fields (i.e.
the relaxation volume) is small compared to the volume associated
with each vacant lattice site (i.e. the atomic volume), then JV >1.
Otherwise, when the relaxation volume is larger than the atomic
volume due to strong interatomic forces, JV <1 and �̄<0, and the
overall volume per unit mass relative to a perfect crystal is reduced
by vacancies. For ionic crystals, additional expansion or contraction
resulting from electrostatic interactions between ions surrounding
charged vacant sites is conceivable; such effects are embedded in FV .
Charge neutrality need not occur in each volume element of fixed
mass.

From (71) and (72), the deformation rate resulting from vacancy
flux is

LV = ḞVFV−1 = ˙̄�(3 − 3�̄)−11. (74)

Let �0 = ��0 denote the fraction of vacancies per unit reference
volume, where � is a scalar constant denoting the volume change ef-
fected by a single vacancy. Net expansion is represented by �>0, and
net contraction by �<0. The following relationships then emerge
between dimensionless volume fractions and number densities of
vacancies:

�̄ = JV−1�0 = JV−1��0 = (1 − �̄)��0 = JE��, (75)

where JE is the Jacobian determinant of FE.

The following notation is introduced, to label variables couched
in intermediate configuration B̄, the configuration acting here as an
evolving reference state for the thermoelastic response [11,25,44]:

�̄ = �0J
V−1 = �JE, (76)

2EE = CE − 1, CE
�� = FEa.� gabF

Eb
.� , (77)

R̄= JV−1FVRFVT = JEFE−1rFE−T , (78)

∇̄� = (
G
∇ �)FV−1 = (

g
∇ �)FE, ∇̄m = (

G
∇ m)FV−1 = (

g
∇ m)FE, (79)

q̄ = JV−1FVQ = JEFE−1q, f̄= JV−1FVf0 = JEFE−1f, (80)

p̄ = FET p̂, ē = FET ê, d̄ = JEFE−1d̂. (81)

The mass density per unit intermediate volume in B̄ is written as
�̄ in (76). Introduced in (77) is the covariant elastic strain EE. In
(78), relationships between contravariant elastic stress R̄ ∈ TB̄× TB̄,
second Piola–Kirchhoff stress R, and Cauchy stress r are given. None
of these stress measures need be symmetric in polarized media.
The intermediate temperature gradient ∇̄� and chemical potential

gradient ∇̄m follow in (79), where ∇̄� = g
∇aFEa.� = G

∇AF
V−1A
.� defines the

anholonomic covariant derivative of a scalar function [13]. In (80),
the heat flux and vacancy flux are eachmapped from the reference to
the intermediate configuration via appropriate Piola transformations.
Polarization, electric field, and electric displacement are mapped to
B̄ according to (81); substitution into (6) then provides

d̄ = JE−1CE−1(�0ē + p̄). (82)

4.3. Constitutive assumptions

Constitutive functions used here are of the same form as (39),
apart from five major differences that reflect the presence of inelastic
deformation and defects. The first is that the recoverable thermoe-
lastic strain EE, as opposed to the total strain E, is used as an inde-
pendent state variable, following the logic of multiplicative plasticity
theory [11,44]. As such, the elastic stress R̄, work conjugate to EE,
is used in place of the second Piola–Kirchhoff stress R. The second
is that electric field and polarization defined with respect to config-
uration B̄ via (81) are used, as opposed to their referential counter-
parts Ê and P̂. The third is that intermediate temperature gradient
∇̄� of (79) and heat flux q̄ of (80) are used as opposed to analogous
quantities defined on B0. The fourth is that the response functions
are assumed to depend upon the density of defects �, and the fifth
is that a constitutive function for the vacancy flux is posited that, in
addition to possibly depending on the other independent state vari-
ables, also depends upon the gradient of the chemical potential, ∇̄m.
Constitutive functions are written generically as

�=�(EE, p̄,�,�),  = (EE, p̄,�,�), R̄= R̄(EE, p̄,�,�), ē = ē(EE, p̄,�,�),

q̄ = q̄(EE, p̄,�,�, ∇̄�), f̄= f̄(EE, p̄,�,�, ∇̄m). (83)

Verification is straightforward that all variables in (83) remain
invariant under rigid body motions of the form x → Q̂x + c with
FE → Q̂FE. The dependence on number of defects per unit spatial
volume � could alternatively be replaced by a dependence on the
volume fraction of defects �̄ via (75).

4.4. Thermodynamics

Use of (71)–(75) leads to the expansion of the spatial velocity
gradient

L = ḞEFE−1 + (Ā/3)[�̇ + �tr(ḞEFE−1)]1, Ā = JE�(1 − JE��)−1, (84)
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where the scalar Ā appears prominently in what follows. The stress
power entering (69) and (70) can be written

�abLab = (JE−1P̄.�a − Āp�FE−1�
.a )ḞEa.� − Āp�̇, (85)

where P̄a� = JEFE−1�
.b �ab is the elastic first Piola–Kirchhoff stress, and

p= −�a
.a/3 is the Cauchy pressure. Expanding the rate of free energy

from (83)

�̇ =
〈

��
�EE

, ĖE

〉
+
〈
��
�p̄

, ˙̄p
〉

+ ��
��

�̇ + ��
��

�̇, (86)

where from definitions (77) and (81)

��
�EE��

ĖE�� = FEb.�
��
�EE��

gabḞ
Ea
.� ,

��
�p̄�

˙̄p� = ��
�p̄�

p̂aḞEa.� + ��
�p̄�

FEa.�
˙̂pa. (87)

Notice also that from (84)

� trL = �(1 + Ā�)FE−1�
.a ḞEa.� + Ā��̇. (88)

Substituting (84)–(88) into dissipation inequality (70) then yields⎡
⎣JE−1P̄.�a −Āp�FE−1�

.a −�FEb.�
��
�EE��

gab−�
��
�p̄�

p̂a−ez�̂�(1+Ā�)FE−1�
.a

+ m�(1+Ā�)FE−1�
.a

⎤
⎦ ḞEa.� +

[
m(1+Ā�)−ez�̂(1+Ā�)−Āp−�

��
��

]
�̇

+
[
êa−�

��
�p̄�

FEa.�

]
˙̂pa−

[
�

��
��

+

]
�̇

−JE−1�−1∇̄��q̄� − JE−1∇̄�m�̄
�
�0. (89)

Consideration of distinct thermodynamic processes in conjunction
with (89) leads to a number of constitutive laws [10,17,30,50]. Pre-
suming that (89) must be satisfied for arbitrary rates of temperature
leads to the usual relationship between temperature and entropy,
identical to (50). Presuming that dissipation associated with the rate
of polarization must be non-negative for arbitrary rates of polariza-
tion leads to

êa = FEa.� �
��
�p̄�

, ē� = CE
���

��
�p̄�

. (90)

Assuming that dissipation associated with the rate of vacancy con-
centration must remain non-negative for arbitrary concentration
rates in the absence of gradients in chemical potential or tempera-
ture, chemical potential m should satisfy

m = (1 + Ā�)−1�
��
��

+ ez�̂ + Ā(1 + Ā�)−1p. (91)

Requiring non-negative dissipation associated with the elastic de-
formation gradient rate then gives

JE−1P̄.�a = �FEb.�
��
�EE��

gab + Āp�FE−1�
.a + �

��
�p̄�

p̂a + ez�̂�(1 + Ā�)FE−1�
.a

− m�(1 + Ā�)FE−1�
.a , (92)

which upon substitution of (91) becomes

P̄.�a = gabF
Eb
.� �̄

��
�EE��

+ p̂a�̄
��
�p̄�

− �FE−1�
.a �̄

��
��

. (93)

Using (90), the elastic stress and Cauchy stress are then, respectively,

�̄
�� = FE−1�

.a P̄a� = �̄
��
�EE��

+ JECE−1��p̄�CE−1��ē�

− �CE−1���̄
��
��

, (94)

�ab = JE−1FEa.� �̄
��
FEb.� = 2�

��
�gab

+ p̂aêb − ��
��
��

gab. (95)

The final terms on the right of each of (94) and (95) account for pos-
sible effects of vacancy concentration on hydrostatic pressure. From
(95), consistency of skew-symmetric parts of Cauchy and Maxwell
stresses in (27) is revealed by �[ab]= ê[bp̂a]= �̂[ba], and the total stress
is thus symmetric

s= 2�
��
�g

+ ��
��
��

g−1 + p̂ ⊗ ê + ê ⊗ p̂ + �0ê ⊗ ê − �0
2
(ê · ê)g−1. (96)

The remaining terms in dissipation inequality (89), upon consul-
tation of (90)–(92), are

−JE−1�−1〈∇̄�, q̄〉 − JE−1〈∇̄m, f̄〉�0. (97)

Though more general formulations are possible, the contribution
from the flux of thermal energy is non-negative when Fourier-type
behavior occurs in the elastically unloaded configuration, analogous
to (51)

q̄ = −K̄∇̄�, (∇̄��)K̄��(∇̄��)�0, (98)

where thermal conductivity matrix K̄ ∈ TB̄ × TB̄ is symmetric and
positive semi-definite. Analogously, the contribution to entropy pro-
duction from the flux of vacancies can be made non-negative by
assuming

f̄= −D̄∇̄m, (∇̄�m)D̄��(∇̄�m)�0, (99)

with diffusivity matrix D̄ ∈ TB̄ × TB̄ symmetric and positive semi-
definite. Applying (98) and (99) in (97), the dissipation inequality is
always satisfied:

(JE�)−1〈∇̄�, K̄∇̄�〉 + JE−1〈∇̄m, D̄∇̄m〉�0. (100)

Finally, from the form of the chemical potential in (91), the va-
cancy flux in (99) satisfies

�̄
� = − D̄��

{
∇̄�

[
(1 + Ā�)−1�

��
��

]
+ ez∇̄��̂

+∇̄�

[
Ā(1 + Ā�)−1p

]}
. (101)

The first term on the right of (101) represents effects of concentra-
tion gradients on the flux of neutral or charged vacancies, the sec-
ond represents effects of electrostatic potential gradients on the flux
of charged vacancies, and the third term represents effects of pres-
sure gradients on the flux of neutral or charged vacancies. Effects of
gradients of concentration and pressure on diffusion are well docu-
mented [33,34,38], as are effects of gradients of electrostatic poten-
tial in ionic crystals [18,37,40,63].

4.5. Representative free energy

Further insight is achieved by considering a free energy per unit
intermediate volume of the form

�̄� = 1
2E

E:C̄ : EE + 1
2 〈p̄, K̄p̄〉 + 〈p̄, �̄ : EE〉

+ 1
2 �̄�2 − (� − �0)b̄ : EE − (� − �1)〈v̄, p̄〉 − �̄c̄� ln

(
�
�0

)
, (102)

where �0 and �1 are constants with dimensions of temperature.
The remaining coefficients in (102) are isothermal constants defined
according to

C̄ = �̄
�2

�
�EE �EE

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

, K̄= �̄
�2

�
�p̄�p̄

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

, �̄ = �̄
�2

�
�p̄�EE

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

,
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�̄ = �̄
�2

�

��2

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

, b̄= −�̄
�2

�
���EE

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

, v̄= −�̄
�2

�
���p̄

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�1

,

c̄ = −�
�2

�

��2

∣∣∣∣∣ EE=0
p̄=0
�=0
�=�0

. (103)

Terms in (102) referred to the intermediate configuration are anal-
ogous to those of the theory for elastic dielectrics in (57) referred to
the reference configuration, apart from the quadratic form of the va-
cancy energy, �̄�2/2, that is newly introduced in (102). Consequences
of this particular choice of vacancy energy with regards to diffusion
are examined in more detail in Section 4.6. Arguments regarding
symmetry analogous to (59) apply here as well.

From (94) and (102), the elastic stress is

�̄
�� = C̄

����
EE�� + p̄��̄

��� − (� − �0)�̄
�� − CE−1���̄�2

+ JECE−1��p̄�CE−1��ē�, (104)

where the first four terms on the right side are symmetric contri-
butions. The first term on the right side accounts for hyperelastic-
ity, the second term accounts for the inverse piezoelectric effect, the
third accounts for the thermoelastic effect (i.e. thermal expansion or
contraction), the fourth accounts for vacancies, and the final term
reflects the possibly non-symmetric contribution of the Maxwell
stress. When the vacancy concentration is small and �2 → 0, the
contribution of vacancies to the stress from the fourth term on the
right of (104) is negligible. On the other hand, consider cases when
this term is significant, when �̄>0, and when the elastic strain is
held fixed. Under such constraints, the concentration of vacancies
induces a negative hydrostatic component of R̄, or a positive hydro-
static pressure.

From (90) and (102), the electric field referred to the intermediate
configuration is

ē� = JE−1CE
��[�̄

��p̄� + �̄���EE�� − (� − �1)�̄�]. (105)

The first term in braces on the right side of (105) accounts for the di-
electric permittivity, the second accounts for the piezoelectric effect,
and the third term accounts for the pyroelectric effect. From (82)

d̄� = (�0�̄�� + JECE−1��)p̄� + �̄���EE�� − (� − �1)�̄�. (106)

Assuming that �̄�� is positive definite and inverting (105)

p̄� = (JE�̄
−1
�� C

E−1��)ē� − (�̄
−1
�� �̄

���
)EE�� + (� − �1)(�̄

−1
�� �̄�)

=
�
��

.�ē� −
�
��

.��EE�� + (� − �1)
�
� �, (107)

where
�
K depends on the elastic strain and where

�
� and

�
v are con-

stants. Substitution of (107) into (106) then yields the relationship
between electric displacement and electric field

d̄� = [�0JECE−1�� + JE2CE−1���̄
−1
�� C

E−1��]ē� − [(�0 − 1)�̄
���

+ JECE−1���̄
−1
���̄

���
]EE�� + [(�0 − 1)�̄� + JECE−1���̄

−1
�� �̄�](� − �1)

= �0�̄
��
R ē� − �̂

���
EE�� + �̂�(� − �1), (108)

where �̄��
R = JECE−1�� + �−1

0 JE2CE−1���̄
−1
�� C

E−1�� is the relative per-
mittivity and is clearly symmetric, and where the other notation is
evident from (108). The first term on the right of (108), �0eRē, rep-
resents the purely dielectric effect, the second �̂ : EE accounts for
piezoelectric coupling, and the third v̂(� − �1) accounts for pyro-
electric coupling. Regarding the latter, temperature-induced polar-

ization will occur when
�
v is non-zero and ���1 in (107). While ēR

is often referred to as the dielectric constant [39], its entries here in
the context of geometric non-linearity are not fixed constants, but
instead depend upon the elastic deformation. The materially linear
framework of (102)–(108) is insufficient to address ferroelectric be-
havior, which requires a more detailed energy functional to account
for transition temperatures and higher-order influences of polariza-
tion [20].

4.6. Diffusion of vacancies

Next consider diffusion of vacancies in the context of chemical
potential (91), diffusion law (101), and free energy function (102).
The chemical potential m in this case is

m = JE−1(1 + Ā�)−1�̄� + ez�̂ + JE�p, (109)

leading to the flux equation

�̄
� = − D̄��{[JE−1(1 + Ā�)−1�̄]�,� + ez�̂,� + JE�p,�

+ �[JE−1(1 + Ā�)−1�̄],� + p[JE�],�}. (110)

The first term on the right of (110) causes vacancies to diffuse from
regions of high concentration to regions of low concentration. The
second term causes positively charged vacancies to diffuse from re-
gions of high electrostatic potential to regions of low electrostatic
potential, leading to a reduction in system energy since the vacancy
charge density ez� and electrostatic potential �̂ are work conju-
gates in (66). The third term causes vacancies to diffuse from regions
of high hydrostatic pressure to regions of low pressure �>0. The
fourth and fifth terms reflect non-linear effects resulting from spatial
gradients in property �̄ (e.g. heterogeneous crystals), elastic volume
changes, and vacancy concentration. Upon neglecting non-linear ef-
fects such that 1 + Ā� ≈ 1 in a homogeneous body in the absence
of elastic deformation, pressure gradients, and electric fields, (110)
reduces to a version of Fick's Law

�̄
� ≈ −�̄D̄���,�, (111)

i.e. a familiar linear relationship between the flux of vacancies and
the spatial gradient in vacancy concentration. The dependence of free
energy upon vacancy density used in (102) is perhaps the simplest
formulation that maintains elements of physical realism. The partic-
ular form used for the vacancy energy, or the parameter �̄, can be es-
timated using arguments from chemical mixture theory [29] or free
energy versus defect content results from lattice statics/dynamics
calculations [11], at defect densities large enough such that interac-
tion effects between neighboring defects become significant. More
general functions than (102) are required to address all relevant cou-
plings between defect content and bulk electromechanical and ther-
mal responses. For example, the vacancy content in elastic dielectrics
may alter the elastic moduli [14,21] and affect the piezoelectric co-
efficients. Furthermore, the vacancy energy and hence diffusion may
be strongly affected by temperature, and could perhaps more realis-
tically be a non-quadratic function of temperature and vacancy con-
centration in dielectric solids [14,15,63]. In the present treatment,
no restrictions are placed on the diffusion coefficients D̄��, except
that their matrix should be symmetric and positive semi-definite to
ensure a positive rate of entropy production. It is well known that
entries of D̄�� need not be constants, but instead may depend upon
pressure and temperature [38]. Deviatoric stresses can affect the dif-
fusion of point defects, as observed for creep mechanisms in poly-
crystals [33] and vacancy or interstitial migration in semiconductors
[1]. Effects of stress directionality on diffusivity could be incorpo-
rated via specification of D̄�� dependent on the elastic strain.
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φ̂

εE

εE

Fig. 3. Dielectric slab with vacancies subjected to biaxial lattice strain and applied
electrostatic potential.

4.7. Example: diffusion under biaxial lattice strain

Consider the slab of material shown in Fig. 3, subjected to the
uniform biaxial elastic strain field �E in the x1 − x2 plane, so that in
Cartesian coordinates, FE1.1 = FE2.2 = 1+ �E and FEa.� = �a

.� otherwise. Po-
tentials are applied to faces of the slab normal to x3, with values of
�̂ differing on either face. Thus the voltages impose an electric field
−∇�̂, where ∇ is the spatial gradient operator in the x3-direction.
For example, when one face of the slab is grounded with �̂ = 0,
the magnitude of the applied electric field is then the value of �̂
at the opposite face divided by the thickness of the slab in the x3-
direction. For simplicity, the interfaces here are assumed to prevent
global straining in the x3-direction. The system corresponds physi-
cally to a dielectric film device [14–16,53]. In the physical system,
the elastic strain �E may arise from a mismatch in lattice parameters
across the interfaces, for example between the dielectric slab and
neighboring substrates or electrodes, in conjunction with processing
steps that may introduce residual thermal stresses [14,53]. Consider
uniaxial diffusion with vacancy flux � parallel to the x3-direction, in
a dielectric solid with isotropic diffusivity d such that D̄�� = d���.
Under these conditions, flux equation (110) mapped to the spatial
coordinate frame becomes

−�/d = [(1 + �E)−2 − 2��]�∇� + [(1 + �E)−2]ez∇�̂, (112)

where �= JE−1�̄=��2
�/��2. Terms in braces in (112) reduce to unity

in the context of traditional, geometrically linear models in which
finite deformations are not considered [18,37], wherein the chemical
potential often exhibits the simple form m = �� + ez�̂ + �p. In the
scenario corresponding to Fig. 3, a spatially constant pressure p is
assumed to complement the assumption of a constant elastic strain;
hence possible effects of pressure gradients on diffusion are absent
in (112).

Shown graphically in Fig. 4(a) is the normalized flux −�/(d�∇�)
corresponding to the first term on the right of (112). Compres-
sive strains �E <0 and reductions in volume from vacancies ��<0
tend to increase the normalized flux, while tensile strains �E >0
and positive volume changes ��>0 from vacancies tend to de-
crease the normalized flux. Interestingly, at very large concentra-
tions ���0.2 and tensile strains �E �0.6, the instantaneous direc-
tion of flux would change since then −�/(d�∇�)<0, and vacancies
would coalesce rather than migrate to areas of lower concentration.
Shown in Fig. 4(b) is the normalized flux arising only from gradients
in electrostatic potential, corresponding to the second term on the
right of (112). Again, compressive strains �E <0 tend to increase the
flux while tensile strains �E >0 tend to decrease the flux. In sum-
mary, large elastic deformations |�E|�0.1 and large vacancy concen-
trations |��|�0.1 are predicted according to (112) and Fig. 4 to influ-
ence vacancy migration. However, stress and vacancy content may
also affect the diffusivity d [38]; such effects would depend on the
particular dielectric material comprising the slab and are not consid-
ered in Fig. 4, wherein d is assumed constant. Furthermore, disloca-
tion nucleation or fracture could ensue in dielectric solids to relieve

εE
-0.6

−�
 /(

ez
d∇

�
)

0

1

2

3

4
Linear theory 
Nonlinear theory 

^
−�

 /(
�d

∇
�)

εE

-1

0

1

2

3

4 Linear theory 

Nonlinear, �� = -0.2

Nonlinear, �� = -0.1

Nonlinear, �� = 0.0

Nonlinear, �� = 0.1
Nonlinear, �� = 0.2

1.00.80.60.40.20.0-0.2-0.4

1.00.80.60.40.20.0-0.2-0.4

Fig. 4. Normalized vacancy flux driven by (a) concentration gradient and (b) elec-
trostatic potential gradient.

potentially large elastic strains; such effects are also not considered
here.

5. Conclusions

A model framework has been formulated for the electromechan-
ical behavior of dielectric crystalline solids subjected to large defor-
mations. These deformations consist of thermoelastically recoverable
stretch and rigid body rotation, as well as volumetric changes result-
ing from voids or vacancies. Charge transport resulting from diffusion
is considered; the motion of electronic charges occurring at faster
time scale (i.e., electric currents) is not. A model for elastic dielectrics
without defects, in the quasi-electrostatic approximation, has been
presented first, to lend context to the more general theory allow-
ing for vacancies developed later. The latter theory may be the first
to consider finite volume changes resulting from charged vacancies
in ionic crystals in the context of multiplicative inelasticity. Govern-
ing equations, constitutive relations, and kinetic equations are cast
in the relaxed intermediate configuration implied by the multiplica-
tive decomposition. Non-linear electromechanical effects associated
with Maxwell's stress are retained. Effects of spatial gradients of va-
cancy concentration, electrostatic potential, and hydrostatic pressure
arise naturally in the thermodynamically admissible diffusion equa-
tion for the vacancy flux, without assumption of such kinetic law
dependencies a priori. Upon assumption of a quadratic free energy
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dependence on vacancy density, Fick-type diffusion is recovered in
the linearized limit, in the absence of electrostatic and pressure ef-
fects. However, in the non-linear regime, large elastic deformations
and large vacancy concentrations may influence the vacancy flux.

Appendix A. List of symbols

X,XA reference coordinates
x, xa spatial coordinates
� motion
t time
B0 reference configuration
B current configuration
B̄ intermediate configuration
GA reference basis vectors
ga spatial basis vectors
G,GAB reference metric tensor
g, gab spatial metric tensor
ḡ, ḡ�� intermediate metric tensor
1,�A

.B,�
a
.b,�

�
.� unit tensor

d̄, �̄
�
.A shifter

G
� ..A

BC reference Christoffel symbols
g
� ..a

bc spatial Christoffel symbols
G
∇A reference covariant derivative
g
∇a spatial covariantderivative
∇̄� intermediate covariant derivative
e, �abc permutation tensor
�0 reference mass density
� spatial mass density
�̄ intermediate mass density
F, Fa.A deformation gradient
FE, FEa.� elastic deformation gradient
FV , FV�

.A vacancy deformation gradient
J Jacobian determinant of F
JE Jacobian determinant of FE

JV Jacobian determinant of FV

C,CAB right Cauchy–Green deformation
CE,CE

�� elastic deformation
E, EAB Lagrangian strain
EE, EE�� elastic strain
�E elastic stretch
v,va spatial velocity
L, La.b spatial velocity gradient
LV , LV�

.� vacancy velocity gradient
D,Dab spatial deformation rate
W,Wab spin
dV reference volume element
dv spatial volume element
dV̄ intermediate volume element
NdS reference surface element
nds spatial surface element
Ê, ÊA reference electric field
ê, êa spatial electric field
ē, ē� intermediate electric field

̂ reference electrostatic potential
�̂ spatial electrostatic potential
f̂, f̂ a Lorentz force
q point charge
q(i) electric charge of carrier i

z(i) valence of carrier i
n̂(i) no. of carriers per spatial volume
e charge magnitude of an electron
�0 permittivity of vacuum
�̂ free surface charge density
	̂ internal surface charge density
�̂0 reference free charge density
�̂ spatial free charge density
�̂V charge density of vacancies
�̂C charge density of electrons/holes
P̂, P̂A reference polarization
p̂, p̂a spatial polarization
p̄, p̄� intermediate polarization
D̂, D̂A reference electric displacement
d̂, d̂a spatial electric displacement
d̄, d̄� intermediate electric displacement
b̄, b̄a mechanical body force
b̂, b̂a electromechanical body force
t, ta mechanical traction
T, Ta total traction
r,�ab Cauchy stress
ŝ, �̂ab Maxwell stress
s, �ab total stress
P, PaA first Piola–Kirchhoff (P–K) stress
P̄, P̄a� elastic first P–K stress
R,�AB second P–K stress

R̄, �̄
��

elastic second P–K stress
p Cauchy pressure
K kinetic energy
E total internal (system) energy
Q thermochemical energy
P total external power
� electrostatic power per unit volume
� absolute temperature
� free energy per unit mass
e internal energy per unit mass
 entropy per unit mass
r heat source per unit mass
c specific heat per unit mass
Y thermal energy
�0 reference vacancy volume fraction
�̄ intermediate vacancy fraction
�0 no. vacancies per reference volume
� no. vacancies per spatial volume
� net volume per vacancy
Ā normalized volume per vacancy
m chemical potential
f0, �

A
0 reference vacancy flux

f, �a spatial vacancy flux
f̄, �̄

�
intermediate vacancy flux

D̄, D̄�� intermediate vacancy diffusivity
d isotropic diffusivity
Q ,QA reference heat flux
q, qa spatial heat flux
q̄, q̄� intermediate heat flux
K,KAB reference thermal conductivity
K̄, K̄�� intermediate thermal conductivity
b,�ab spatial thermal stress coefficients

b̄, �̄
��

intermediate thermal stress coefficients

v,�a spatial pyroelectric coefficients

v, �̄� intermediate pyroelectric coefficients

C,CABCD reference elastic coefficients
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C̄, C̄
����

intermediate elastic coefficients
K,�AB reference dielectric susceptibility

K, �̄
��

intermediate susceptibility
�,�ABC reference piezoelectric coefficients

�̄, �̄
���

intermediate piezoelectric coefficients

ēR , �̄
��
R relative dielectric permittivity

� spatial vacancy energy coefficient
�̄ intermediate vacancy energy coefficient
c̄ intermediatespecific heat coefficient
�0,�1 reference temperatures
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